在大气污染中,氮氧化物是主要的污染源之一,主要来源于燃烧和化工生产过程。目前,各大排污企业主要采用 SCR/SNCR 和高分子脱硝技术。这些技术基本上能够实现 90% 及以上的处理效率,已相对成熟。
然而,现有的脱硝技术仍有一些需要改进的地方。其主要原理是:在催化剂的作用下,向温度为 280-420 摄氏度的烟气中实时喷入氨,将 NOx 还原为 N2 和水。为确保反应与烟气排放量相匹配,控制喷入的氨量,否则可能导致氨逃逸。
氨逃逸会带来多方面的危害。,逃逸的氨气造成资金浪费和环境污染。其次,氨逃逸会腐蚀催化剂模块,导致催化剂失活和堵塞,缩短其寿命。此外,逃逸的氨气与空气中的 SO3 反应生成具有腐蚀性和粘结性的硫酸氨盐,可能导致下游的脱销设备中的空预器蓄热原件堵塞和腐蚀。
因此,在烟气处理过程中加装氨逃逸监测设备至关重要。
激光氯化氢/氟化氢在线监测系统采用高温加热抽取技术,对工业过程中的气体进行连续在线监测,系统由激光分析探头箱、控制箱、以及两箱之间连接的气路和电路构成,主要应用于众多工业领域气体排放监测和过程控制,例如:燃煤发电厂、铝厂、钢铁厂、冶炼厂、垃圾发电站、水泥厂和化工厂、玻璃厂等。
一氧化碳和氯化氢的排放特点与危害
一氧化碳(CO)和氯化氢(HCl)是两种常见的固定污染源废气成分,它们的排放特点与危害不容忽视。一氧化碳是一种无色、无味、无刺激性的有毒气体,主要来源于化石燃料的燃烧不完全过程。由于其与血红蛋白的结合能力强于氧气,因此一旦进入人体,会迅速与血红蛋白结合,导致组织缺氧,严重时可能危及生命。据世界卫生组织(WHO)统计,每年全球因一氧化碳中毒导致的死亡人数高达数千人。
氯化氢则是一种具有强烈刺激性和腐蚀性的无色气体,主要来源于化工、冶金等行业的生产过程。氯化氢对眼睛、皮肤和呼吸道有强烈的刺激作用,长期接触可能导致慢性呼吸道疾病、皮肤炎症等健康问题。此外,氯化氢还是一种酸性气体,与水蒸气结合会形成盐酸,对环境和设备造成腐蚀和损害。
为了有效监测和控制一氧化碳和氯化氢的排放,需要采用的连续监测技术。这些技术通常基于光学、电化学或化学传感器等原理,能够实时监测废气中的一氧化碳和氯化氢浓度,并发出警报或自动关闭污染源,从而避免环境污染和危害人体健康。
例如,在钢铁冶炼行业,由于高温冶炼过程中会产生大量的一氧化碳和氯化氢等有害气体,因此采用的废气处理系统和连续监测技术来确保排放达标。通过实时监测废气中的一氧化碳和氯化氢浓度,企业可以及时调整生产工艺和废气处理措施,从而大限度地减少有害气体的排放。
综上所述,一氧化碳和氯化氢的排放特点与危害不容忽视。通过采用的连续监测技术和管理措施,我们可以有效监测和控制这些有害气体的排放,从而保护环境和人类健康。