CEMS 系统主要由四个部分组成,具体如下:
(1)气态污染物监测部分:监测烟气中的NOx、NH3 浓度等。
(2)烟气排放参数监测部分:监测烟气流速、温度、压力、氧含量等。
(3)控制系统部分:采用PLC 控制,包括系统的采样、反吹、维护、校准、报警等的控制。同时当系统维护、反吹、校准的时候,系统模拟量信号输出保持不变,另外当系统处于报警的时候,系统会根据各种报警采取相应的控制。完成数据的采集、处理,并按相关标准要求的数据格式将相关参数上传。
二、烟气脱硝系统中CEMS 存在的主要问题
2.1 粉尘浓度高引起的采样系统堵塞问题
脱硝系统的CEMS 布置在省煤器和空预器之间,由于烟气没有经过除尘器,烟气中的粉尘浓度高达30g/m3,有的甚至更高,极易造成烟气采样系统堵塞。
用探头位置设置过滤装置,避免粉尘颗粒进入采样管,引起采样管线堵塞,一旦堵塞,处理起来的难度就会很高。同样,在测量烟气流速时,也要考虑皮托管的堵塞问题。因而解决好采样系统中过滤器的堵塞和清理对烟气样气分析至关重要。
共性问题:
1.烟气采样系统中采样管线伴热效果差,采样管线的伴热温度不能维持在烟气露点温度以上,造成烟气在管内结露、在烟气中粉尘的共同作用下引起采样管堵塞。
2.因锅炉投油助燃,烟气中的大量油烟污染并堵塞取样探头。
3.烟气中粉尘含量过大,导致取样探头内的过滤器堵塞。
4.取样探头内的过滤器滤芯孔径的选择不合理,孔径过大,进入取样管线的灰尘过多。
5.采样探头中过滤网的孔径的选择太小,增大了堵塞几率。
6.安装时,管道弯曲半径过小或打折,流道受阻,产生堵塞。
7.吹扫时间间隔设置过长。
8.吹扫用压缩空气是带水、含油,从而污染堵塞管道。
2.2 分析仪因无流量而失灵
由于脱硝CEMS 的工作环境相当恶劣,可能造成取样系统堵塞,因此分析仪会因无流量而失灵,监测分析数据失效。共性问题:
1.取样管道或探头堵死。
2.预处理系统内部过滤器堵塞。
3.预处理系统中冷凝器结冰,除湿效果差;
4.预处理系统中蠕动泵故障,冷凝器不能正常工作,除湿效果差。
5.预处理系统中的抽气泵长时间带水运行,烟气抽取不出。
2.3 高温的问题
一般情况下,脱硫系统入口的烟温约为115~150℃,脱硫系统出口的烟温约为50℃(无GGH)。而在脱硝系统入口的烟温在310~420℃左右,出口烟温与入口相差不大。
因此,如果采用与脱硫CEMS 系统相同的测量方法,则采样探头、皮托管流量计的取压元件,温度仪表等需插入烟道中设备选用耐高温的材料,确保其能在高温环境下安全、稳定的运行,从而数据的准确性。
2.4 腐蚀变形的问题
脱硝系统中的烟气中含有、NO、NO2、水蒸气、NH3、和SO2 等。烟气在反应过程中可能生成酸或者碱以及强酸弱碱盐等物质。工作环境比较恶劣,采样探头、皮托管流量计的取压元件、温度仪表都置于烟道内,同时烟道内的烟气流速比较快(一般为15m/s),这些都会导致传感器的变形和腐蚀,引起测量仪表失效。
共性问题:
脱硫脱硝系统中的SO2/NO2 气体都易溶于水,溶解体积比分别为1:40(水:气)和1:4(水:气)。SO2/NO2 气体溶于水后分别生成硫酸和硝酸溶液,该酸性溶液的腐蚀性随其浓度的增大而变大。
脱硫系统的SO2/SO3 原烟气露点温度在120℃~130℃;脱硝系统的NOx 原烟气露点温度在60℃左右。对于直接抽取式CEMS,如果取样管线温度控制不当,则污染物气体会直接结露。
脱硝系统净化烟气中NH3 与SO3 反应生成硫酸氢铵和硫酸铵。这两种物质都是强酸弱碱盐,水溶液具有一定的腐蚀性。并且,硫酸铵固体在280℃开始分解,分解物质为硫酸氢铵和氨气,因此这两种物质在取样管中有结晶的可能。
2.5 分析传感器的量程以及检出限的问题
针对燃煤锅炉的实际情况,脱硝装置前烟道内NOx 的浓度在400~1000 mg/Nm3,《大气污染物排放标准》(GB13223-2011)规定脱硝后的氮氧化物浓度不大于100mg/Nm3。
因此脱硝装置前后NOx的检测要求传感器具有较大的量程,并且具有较低的检测限,确保脱硝前后NOx 的检测的准确性。同时,为了防止脱硝过程中还原剂NH3 的逃逸造成二次污染,以及生成氨盐腐蚀下游设备,在脱硝装置的出口设置了氨逃逸检测设备,《火电厂烟气脱硝工程技术规范_SCR》(HJ_562-2010)逃逸氨的浓度不大于3 ppm,因此对逃逸氨设备低检测限的要求则更高,一般要求为0.15~0.3 ppm。
CEMS气态污染物监测检查事项
气态污染物监测子系统,主要用于监测SO2、NOx的浓度和排放总量。
检查事项有以下3项:1. 颗粒物过滤器是否干净 。2. 红外法及化学发光法的 NO2 转换器的工作是否正常,其温度与登记备案的是否一致 。3. CEMS内部管路连接是否紧固,管壁是否没有积灰及冷凝水。运行不正常的现象:1. 颗粒物过滤器比较肮脏,或者有积灰 。2. CEMS内部管路连接松动,管壁存在积灰或者冷凝水。二、CEMS颗粒物监测检查事项颗粒物监测子系统,主要用于监测烟尘的浓度和排放总量。检查事项有以下4项:1. 吹扫系统电机是否正常工作 。2. 隔离烟气与光学探头的玻璃视窗是否清洁,仪器光路是否准直 。3. 吹扫系统的管道连接是否正常。4. 吹扫风机的净化风滤芯是否清洁。运行不正常的现象:1. 吹扫系统电机出现异常噪声、震动。2. 隔离烟气与光学探头的玻璃视窗表面积尘,仪器光路偏离。3. 吹扫系统的管道有裂缝,连接松动。4. 吹扫风机的净化风滤芯积灰。三、CEMS烟气参数监测检查事项烟气参数监测子系统,主要用来测量烟气流速、烟气温度、烟气压力、烟气含氧量、烟气湿度等,这些指标用于排放总量的积算和相关浓度的折算。检查事项有以下4项:1. 皮托管是否变形,皮托管是否与气流方向垂直,法兰是否紧固无松动。2. 热敏温度计表面是否有积尘。3. 空气过量系数、皮托管系数 K 值、烟道截面积、速度场系数与登记备案是否一致 。4. 废气排放量、气态污染物浓度等换算是否符合有关要求。运行不正常的现象:1. 皮托管变形、堵塞,与烟道气流方向偏离,不垂直。2. 热敏温度计表面有腐蚀情况,有积尘。3. 空气过量系数、皮托管系数 K 值、烟道截面积、速度场系数与登记备案不一致。4. 废气排放量、气态污染物浓度等换算不符合的相关要求。
CEMS数据采集处理检查事项CEMS数据采集处理子系统,由数据采集器和计算机系统构成,实时采集各项参数,生成各浓度值对应的干基、湿基及折算浓度,生成日、月、年的累积排放量,完成丢失数据的补偿并将报表实时传输到主管部门。检查事项有以下4项:1. 自动监控仪器和数据采集传输仪器中,数据采集参数(如量程等)设置是否一致。2. 自动监控仪器和数据采集传输仪器与其验收文件、登记备案是否一致,或者与其上一次有效性审核是否一致。3. 自动监控仪器与数据采集传输仪器间的数据线路是否正常连接。4. 自动监控仪器和数据采集传输仪器的零点和跨度校准频次和校验频次是否达到要求。5. 现场通入标准气体测试,看看仪器的零点漂移和跨度漂移是否符合规定的失控指标。6. 现场通入标准气体测试,看看仪器的准确度是否符合规定的参比方法验收技术指标要求。运行不正常的现象:1. CEMS数据采集传输仪器与自动监控仪器之间,加装有不明的数据处理设备(如可编程控制器)或信号处理设备(如滤波器等限制电流波动范围的设备) 。2. 数据采集传输仪器与通信设备(调制解调器、无线发射器、光纤通讯设备)之间,连接有其他不明设备。3. 自动监控设施停止工作后,数据采集传输仪仍产生并自动发送与实际情况不相符合的数据。4. 参数设置与验收文件、登记备案或者上一次有效性审核不一致。5. 数据采集参数高限设置过低,或者低限设置过高。6. CEMS自动监控仪器和数据采集传输仪器没有开展定期校准和定期检验。
EMS(Continuous Emission Monitoring System),即连续排放监测系统,是一种对大气污染源排放的气态污染物和颗粒物进行浓度及排放总量连续监测,并将监测信息实时传输至主管部门的装置。该系统又被称为“烟气自动监控系统”、“烟气排放连续监测系统”或“烟气在线监测系统”。
CEMS系统组成
CEMS系统主要由以下几个子系统构成:
气态污染物监测子系统:负责监测废气中的二氧化硫(SO₂)、氮氧化物(NOx)等气态污染物的浓度。
颗粒物监测子系统:用于监测废气中的颗粒物浓度。
烟气参数监测子系统:监测废气的实际流量、温度、湿度等参数。
数据采集处理与通讯子系统:负责数据采集、处理及与主管部门的实时通讯。
环保监测系统厂家
监测与折算标准
我国环保标准规定,固定污染源排放的污染物浓度和排放总量需按标准状态下的干烟气进行折算。标准状态下的干烟气是指在温度273K(即0°C)、压力101325Pa条件下不含水蒸气的烟气。
环保参数折算计算方法
1. 流速折算
公式:Vs = Kv * Vp
Vs:折算流速
Kv:速度场系数
Vp:测量流速
2. 粉尘折算
粉尘干基值:DustG = Dust / (1 – Xsw/100)
DustG:粉尘干基值
Dust:实测粉尘浓度值
Xsw:湿度
粉尘折算浓度:DustZ = DustG * Coef
DustZ:折算的粉尘浓度值
Coef:折算系数,计算方式为 Coef = 21 / (21 - O₂) / Alphas
O₂:实测氧气体积百分比
Alphas:过量空气系数(根据锅炉类型及容量确定)
粉尘排放率:DustP = DustG * Qsn / 1000000
DustP:粉尘排放率
Qsn:干烟气流量,计算方式为 Qsn = 3600 * F * Vs
3. 二氧化硫(SO₂)折算
SO₂干基值:SO₂G = SO₂ / (1 – Xsw/100)
SO₂折算浓度:SO₂Z = SO₂G * Coef(使用与粉尘相同的Coef)
SO₂排放率:SO₂P = SO₂G * Qsn / 1000000
Qsn(干烟气流量)计算需考虑温度、压力及湿度的影响,具体公式为 Qsn = Qs * 273 / (273 + Ts) * (Ba + Ps) / 101325 * (1 – Xsw/100)
4. 氮氧化物(NOx)折算
NO干基值:NOG = NO / (1 – Xsw/100)
NO折算浓度:NOZ = NOG * Coef(使用与粉尘和SO₂相同的Coef)
NO排放率:NOP = NOG * Qsn / 1000000
同样,Qsn的计算需参考上述干烟气流量公式。
通过以上计算方法和公式,CEMS系统能够准确地将实际监测的污染物浓度折算为标准状态下的干烟气排放数据,为环保主管部门提供有效的监管依据。
烟气排放连续监测系统的简称是CEMS。
一、CEMS是什么?
烟气排放连续监测系统(CEMS)是一种能够实时、连续地监测工业企业的烟气排放情况的系统。它通常由烟气取样探头、分析仪、数据采集系统、数据处理系统、数据储存系统和数据传输系统等组成。CEMS可以监测诸如二氧化硫、氮氧化物、氧含量、烟尘、氟化物、氨等多种排放物质的含量、浓度和流量等数据。
二、CEMS的意义
CEMS的重要性不言而喻。工业企业的排放与环保息息相关。在环保规定日趋严格的情况下,CEMS可以帮助监测和控制企业排放,保障环境安全和健康。此外,CEMS的运行还可以优化工业企业的生产流程,提高生产效率和产品质量,可以有效地降低企业的运营成本。
三、CEMS的工作原理
CEMS工作原理比较复杂,通常需要人员进行系统设计、安装和维护。简单来说,其工作流程如下:
1.烟气取样:烟气排放经过取样探头采集进入系统。
2.分析仪:各类污染物在分析仪中被转化成测量信号。
3.数据采集:采集仪器将信号转化并输出为数据串。
4.数据处理:主控计算机进行处理和分析,得到排放数据。
5.数据储存:排放数据被存储在相应的数据储存设备上。
6.数据传输:排放数据通过网络传输至相关监管机构。
四、CEMS的发展趋势
随着环保意识的加强和环保规定的不断升级,CEMS系统在全球范围内得到了快速的发展。目前,CEMS系统已广泛应用于电力、制药、化工、钢铁、石油等众多领域。未来,CEMS系统将更加智能化、多元化,也将更加贴近实际的环保需求。
【结论】
烟气排放连续监测系统(CEMS)是一种能够实时、连续地监测工业企业的烟气排放情况的系统,对于保护环境和调控企业排放具有重要意义。随着环保要求的提高和技术的发展,CEMS将会更加智能化、多元化,成为未来工业企业排放监测的重要工具。
4.1.监测项目
SO2、NOx、O2、颗粒物、温度、压力、流速、湿度。
4.2. 监测方法
烟气采样方法:直接抽取法
SO2监测方法:紫外差分光学吸收光谱法
NOx监测方法:紫外差分光学吸收光谱法
O2监测方法:电化学法
颗粒物监测方法:激光前向散射法
温度监测方法:铂电阻法
压力测量方法:压力传感器
流速测量方法:差压法(S型皮托管)
湿度测量方法:离子流法